Abstract

Self-organizing blends of an amphiphilic comb polymer having a poly(methyl methacrylate) (PMMA) backbone and poly(ethylene oxide) (PEO) side chains in poly(vinylidene fluoride) (PVDF) have been examined as a means to create foul-resistant, self-healing surfaces on polymer membranes. X-ray photoelectron spectroscopy (XPS) analysis of phase inversion membranes prepared from these blends indicates substantial surface segregation of the amphiphilic component, which occurs both during the coagulation step of the phase inversion process and in subsequent annealing of the membranes in water. With annealing, a near-surface coverage of nearly 45 vol % comb polymer is produced on a membrane with a bulk comb concentration of only 3 vol %. Surface enrichment of the hydrophilic comb polymer is shown to impart significant resistance to the adsorption of bovine serum albumin (BSA). XPS analysis of membranes treated with concentrated acid shows that hydrophilic surface layers removed by acid exposure may be regenerated b...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.