Abstract

In the present study, we used Kalamkas, which is a typical Kazakhstani oilfield, which produces wastewater with high Ca2+/Mg2+ and Fe2+ concentrations, as a case study. We investigated a method for preparing Fe2+ polymer solutions without oxygen isolation under the conditions of salinity >110 × 103 mg/L, Ca2+/Mg2+ concentration >7000 mg/L, and Fe2+ concentration >30 mg/L. Fe2+-resistant groups were grafted onto the molecular chains of a hydrophobically associating polymer prepared using existing synthesis technology to overcome the decrease in apparent viscosity of the polymer solution due to the oxidation of Fe2+ during solution preparation. The experiments showed that PAM-IR with iron-resistant groups can be completely dissolved in the wastewater within 180 min, and can tolerate an NaCl concentration of up to 0.23 × 106 mg/L, a Ca2+ concentration of up to 10 × 103 mg/L, an Mg2+ concentration of up to 9 × 103 mg/L, and a Fe2+ concentration of up to 90 mg/L, with favorable thickening performance and resistances to NaCl, Ca2+, Mg2+, and Fe2+. PAM-IR has good injection performance and can establish a high resistance factor (FR) and residual resistance factor (FRR) to increase the sweep efficiency. Therefore, it is potentially useful for enhancing oil recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.