Abstract

Ag or Cu metal nanoparticle paste can be used as a bonding material for electronic packaging applications. However, Ag nanoparticle paste has some drawbacks including high cost and being prone to ion migration in high-humidity conditions. The main obstacle to using Cu nanoparticle paste is rapid oxidation in air during heating. In this work, we describe a method to prepare Ag-Cu alloy nanoparticle paste by a polyol chemical reduction method combined with subsequent concentration. Characterization with ultraviolet–visible spectroscopy, transmission electron microscopy, x-ray photoelectron spectroscopy and energy dispersive spectrometry confirm the formation of the Ag-Cu alloy structure. During the synthesis of Ag-Cu alloy nanoparticles, an Ag core forms initially, followed by codeposition of Ag and Cu. Most of the Ag-Cu alloy nanoparticles have a truncated octahedral shape with twin structures located at the edges. This Ag-Cu alloy nanoparticle paste has a good oxidation resistance up to 350°C in air atmosphere. Using the Ag-Cu alloy nanoparticle paste, joints were formed at a low sinter-bonding temperature of 160°C. Shearing tests confirm the formation of robust joints, with an average shear strength of 50 MPa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.