Abstract

In this study, new polysulfone capsules containing Cyanex 272 (Cyanex 272@PSF capsules) were prepared by phase inversion technique for the sorption of Co(II) from aqueous solution. The characterization of the Cyanex 272@PSF capsules which were performed by using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and thermal gravimetric analysis (TGA) indicated that Cyanex 272 was successfully encapsulated by polysulfone. For the Cyanex 272@PSF capsules having the highest sorption efficiency, the encapsulation efficiency was determined as 7.2%. The batch sorption experiments showed that removal of Co(II) from aqueous solutions occurred through the cation-exchange and chelation mechanisms and maximum removal was achieved at an initial pH of 8.0 (final pH of 5.9). The Cyanex 272@PSF capsules produced with dispersed phase containing 2.0% of Cyanex 272 (by wt.) provided the highest Co(II) removal. The sorption equilibrium time was attained within 120min. By confirming the non-linear Chi-square (χ2) statistical test, Langmuir isotherm model was the best fit model. Langmuir sorption capacity (Qo) and sorption constant (b) were 2.014mg/g and 0.281L/mg, respectively. The regenerated capsules could be used three times with no change in their sorption capacities. Based on the experiments performed at initial pH of 8.0 for other metal ions, including Ni(II), Pb(II) and Cd(II), sorption ability of Cyanex 272@PSF capsules was in the order: Co(II)≈Ni(II)>Cd(II)>Pb(II). Consequently, Cyanex 272@PSF capsules have potential for removing Co(II) from aqueous solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.