Abstract

Photocatalytic degradation of methyl orange (MO) as a model of an organic pollution was accomplished with magnetic and porous TiO(2)/ZnO/Fe(3)O(4)/PANI and ZnO/Fe(3)O(4)/PANI nanocomposites under visible light irradiation. The structures of nanocomposites were characterized by various techniques including UV-Vis absorption spectroscopy, XRD, SEM, EDS, BET and TGA. Optical absorption investigations show two λ(max) at 450 and 590 nm for TiO(2)/ZnO/Fe(3)O(4)/PANI nanocomposites respectively possessing optical band gaps about 2.75 and 2.1 eV smaller than that of the neat TiO(2) and ZnO nanoparticles. Due to these optical absorptions, the nanocomposites can be considered promising candidates as visible light photocatalysts to produce more electron-hole pairs. The degradation of MO, extremely increased using polymeric photocatalysts and decolorization in the presence of visible light achieved up to 90% in less than 20 min in comparison with the neat nanoparticles (about 10%). All these advantages promise a bright future for these composites as useful photocatalysts. The degradation efficiency of MO using stable nanocomposites was still over 70% after ten times reusing. The highest decolorizing efficiencies were achieved with 0.75 g L(-1) of catalyst and 10 mg L(-1) of MO at natural pH under visible light irradiation in less than 20 min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.