Abstract

The environmental problems in the world are attracting increasing amounts of attention, and heavy metal pollution in the water has become one of the focuses of the ecological environment. Molybdenum disulfide (MoS2) has excellent adsorption performance because of its extremely high specific surface area and unique active site structure, which has attracted an increasing amount of attention in the field of heavy metal disposal in various types of water. In this paper, two sorts of MoS2 nanoparticles, spherical and lamellar, were synthesized by different chemical methods. Their morphology and structure were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and a Raman spectrometer. The adsorption properties of two sorts of MoS2 nanoparticles for copper (Ⅱ) ions in water were investigated by changing the pH value, adsorption time, initial concentration of solution, adsorption temperature, etc. Finally, the adsorption mechanism was analyzed by kinetic, isothermal, and thermodynamic models. The results show that two microstructures of MoS2 nanoparticles can be used as efficient adsorption materials for removing heavy metal ions from water, although there are differences in adsorption capacity between them, which expands the theoretical basis of heavy metal adsorption in a water environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.