Abstract

A novel mesoporous ZrO2 immobilized magnetic Fe3O4 microsphere (m-ZrO2@Fe3O4) was successfully synthesized and characterized by transmission electron microscope (TEM), X-ray diffractometer (XRD), nitrogen adsorption measurement (NAM), energy-dispersive X-ray analysis (EDX), vibrating sample magnetometer (VSM). Then the resultant m-ZrO2@Fe3O4 and an n-octadecylphosphonic acid modified magnetic microsphere (Fe3O4-OPA) were employed as clean-up co-adsorbents of QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe) method for the analysis of 42 pesticides and 7 polychlorinated biphenyls (PCBs) in fish samples. Lipid co-extractives such as fatty acids in QuEChERS extracts could be efficiently removed through the Lewis acid–Lewis base interaction between m-ZrO2@Fe3O4 and carboxylic groups, while some other apolar interferents could be adsorbed through hydrophobic interaction by Fe3O4-OPA. Meanwhile, the magnetic property of adsorbents endows the clean-up procedure with manipulative convenience. Several parameters affecting the clean-up performance were investigated. Under the optimal conditions, the modified QuEChERS method combined with gas chromatography–tandem mass spectrometry (GC–MS/MS) for the multi-class, multi-residue analysis of pesticides and PCBs in fish samples was validated according to linearility, recovery and precision. Good linearities were obtained for all analytes with R2 larger than 0.9903. Limits of detection (LODs) were found to be in the range of 0.02–4.40ng/g. The method recoveries of all analytes spiked at three concentration levels in blank fish samples were from 69.8% to 117.1%, with the intra-day and inter-day relative standard deviations (RSDs) less than 13.4% and 16.5%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.