Abstract

Mesoporous carbons were prepared using commercial silica particles and a formaldehyde–resorcinol resin as a template and carbon precursor, respectively. By changing the molar ratio of template to carbon precursor, mesoporous carbons with different mesoporosities (MC- X, X represents the molar ratio of template to carbon precursor) were produced. The resulting MCs had a high-surface area and large pore volume. In particular, the highest mesoporosity was observed for MC-3. Pt catalysts-supported on MC- X were prepared using formaldehyde as a reducing agent for use as a cathode catalyst in a polymer electrolyte fuel cell (PEMFC). The size of Pt crystallite was dependent on the properties of corresponding carbon support. As a whole, a carbon support with a high-surface area and high-mesoporosity served the best in terms of a high-dispersion of Pt nanoparticles. In a unit cell test of the PEMFC, a Pt catalyst with a high-mesoporosity and fine dispersion of metal showed an enhanced performance. The findings indicate that the surface area combined with the mesoporosity had a positive influence on the metal dispersion and the distribution of ionomer, leading to the enhanced cell performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.