Abstract

The present study was undertaken to develop techniques to isolate bovine adipocytes, to compare their rates of glucose metabolism and insulin sensitivity with adipocytes in adipose tissue, and to determine if isolated bovine adipocytes specifically bind insulin. Cell size and diameter distributions were the same for adipocytes fixed with OsO4 after isolation with collagenase and adipocytes liberated from OsO4-fixed adipose tissue slices. On a per cell basis, lipogenic rates were greater for isolated adipocytes compared with intact adipose tissue. Similar differences were found for glucose oxidation. In short term incubations, glucose oxidation and lipid synthesis were not stimulated by insulin (0-100 ng/ml) in either isolated adipocytes or tissue. Specific binding of [125I]iodoinsulin at 30 C was low (0.8%) in the first group of six beef cattle sampled, but increased with increasing cell concentration. Insulin degradation after 90 min was less than 5%. The specificity of [125I]iodoinsulin binding was studied in a second group of six animals. There was no specific binding of insulin in this group. In summary, bovine adipocytes can be isolated which are metabolically active and provide a valid system for studying hormone binding and action. In the present study, glucose metabolism in bovine adipocytes was not stimulated by insulin in vitro. This insensitivity to insulin was associated with a negligible capacity for insulin binding. These findings suggest that the lack of insulin sensitivity in bovine adipose tissue may be due to an inability to specifically bind insulin. This may be related to the unique metabolism of ruminant adipose tissue, which is less dependent upon glucose for fatty acid synthesis than is adipose tissue from nonruminant species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.