Abstract

Residual sludge is a significant waste resource, and the preparation of biochar achieves sludge disposal. Biochar has a high uptake capacity for phosphate. To prepare a sludge biochar adsorbent for phosphate, sludge was chemically and anaerobically treated in the presence of iron salts and pyrolyzed. We investigated the effects of the pyrolysis temperature and iron salt on the phosphate uptake capacity, finding that the pretreatment of the sludge with iron salts removed intrinsic phosphate, thus improving the uptake ability. The optimal adsorbent, denoted SB-B-Fe, was prepared by pyrolysis at 700 °C and subsequently modified with a 20 g/L iron-containing solution, yielding a phosphate uptake capacity of 0.5 mg/g. Further, the performance of SB-B-Fe remains high at pH 5–9 and is less affected by interfering anions. The sorption kinetics are consistent with the pseudo-second-order kinetic model, suggesting uptake by chemisorption, and the Langmuir model has a saturation capacity of 0.85 mg/g for uptake and prefers monolayer molecular uptake. The characterization showed that the adsorbent surface provided many uptake sites for phosphate and a high specific surface area. We hope that these findings will encourage the development of other value-added waste-based materials for environmental remediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.