Abstract

The purpose of this study was to design an injectable hydrogel with temperature-sensitive property for safe and high efficient in vivo colon cancer hyperthermia and chemotherapy. Chitosan (CS) solution was injected into the tumor at room temperature and automatically gelled after warming to body temperature in the present of β-glycerophosphate (β-GP). Combined localized tumor photothermal and chemotherapy were achieved by dissolving photothermal material MoS2/Bi2S3-PEG (MBP) nanosheets and drug molecule doxorubicin (DOX) into the hydrogel, and the gel system could encapsulate DOX and MBP nanosheets and prevent them from entering the blood circulation and damaging normal tissues and cells. More importantly, the CS/MBP/DOX (CMD) hydrogel exhibited a photothermal efficiency of 22.18% and 31.42% in the first and second near infrared light (NIR I and NIR II) biowindows respectively at a low MBP concentration (0.5 mg/mL). Besides, the release of the DOX from CMD hydrogel was controllable since the gel temperature could be governed by NIR laser irradiation. Moreover, the chitosan-based hydrogel had antibacterial effects. The designed composite hydrogel is anticipated to act as a platform for the high efficient treatment of tumors owing to the different penetration depths of NIR I and NIR II.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.