Abstract

The dispersibility of graphene is one of the determining factors which affect its efficacy in practice. In the present work, highly dispersed graphene [namely, titanium dioxide (TiO2)-reduced graphene oxide (RGO) nanocomposites] was fabricated by a novel TiO2 intercalation method to the RGO. Such a highly dispersed graphene with a marginal doping amount of the solid aluminosilicate precursors (i.e., 0.01% and 0.02% by weight of geopolymer paste) was used to modify geopolymer pastes. Experimental results showed that such TiO2-RGO nanocomposites can effectively improve mechanical properties of geopolymer matrix, especially the flexural strength, which increased 85%–125% with 0.02% by weight graphene. The graphene enabled the reduction of concentrated stress, which prevents the development of cracks in geopolymer matrix. Compared with the control specimens, the graphene-modified geopolymers are more compact and denser due to the refined pore structures of graphene/geopolymer composites, which is confirmed by the scanning electron microscopy and mercury intrusion porosimetry results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.