Abstract

Concerning application of graphene, a lot of efforts have been made to improve performance of nanomaterials in many fields, such as electric and electronic devices. Some examples are preparation of 3-dimension structured nanomaterials like nanoballs by CVD process and hybridizing with silicon. These graphene-based materials are proven to be available for secondary battery, EMI and ACF in electronics. Especially, some research has shown that they were very effective to enhance safety and volumetric capacity when they were used as anode materials of secondary battery. Although graphite and its compound with metal have been used as an anode material due to their high stability and reversibility, it still has lower charge capacity. On the contrary, silicon is known as a material which increases the charge capacity up to four times, compared with carbon-based materials, but it has lower stability and reversibility. For that reason, a few researchers just started to improve the charge capacity by hybridization of carbon-based material with silicon. In this paper, we prepared nanocarbon based material which has a new structure of graphene encapsulated silicon nanoball as an anode material which is applicable to high-capacity secondary battery. In order to form a graphene encapsulated silicon nanoballs, the polystyrene encapsulated silicon nanoballs were prepared by emulsion polymerization of styrene monomer with silicon nanoparticles. The resulting nanoballs were immersed in iron chloride solution and then dried. Finally they were treated in high temperature through CVD and etched by hydrogen chloride. Morphology of the graphene encapsulated silicon nanoballs was observed by the field emission scanning electron microscope (FESEM) and the field emission transmission electron microscope (FETEM) to search for core-shell structured nanoball. Spherical structure of graphene encapsulated silicon nanoball was investigated by the Raman, the X-ray Photoelectron Spectroscopy to identify graphene layers on the surface of the inner silicon core.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.