Abstract

AbstractThe initial procedure in the isolation of an protein, a protein complex, or a subcellular organelle is the preparation of an extract that contains the required component in a soluble form. Indeed, when undertaking a proteomic study, the production of a suitable cellular extract is essential. Further isolation of subcellular fractions depends on the ability to rupture the animal tissues in such a manner that the organelle or macromolecule of interest can be purified in a high yield, free from contaminants and in an active form. The homogenization technique employed should, therefore, stress the cells sufficiently enough to cause the surface plasma membrane to rupture, thus releasing the cytosol; however, it should not cause extensive damage to the subcellular structures, organelles, and membrane vesicles. The extraction of proteins from animal tissues is relatively straightforward, as animal cells are enclosed only by a surface plasma membrane (also referred to as the limiting membrane or cell envelope) that is only weakly held by the cytoskeleton. They are relatively fragile compared to the rigid cell walls of many bacteria and all plants and are thus susceptible to shear forces. Animal tissues can be crudely divided into soft muscle (e.g., liver and kidney) or hard muscle (e.g., skeletal and cardiac). Reasonably gentle mechanical forces such as those produced by liquid shear may disrupt the soft tissues, whereas the hard tissues require strong mechanical shear forces provided by blenders and mincers. The homogenate produced by these disruptive methods is then centrifuged in order to remove the remaining cell debris.KeywordsAnimal TissueIntegral Membrane ProteinSurface Plasma MembraneRigid Cell WallMince TissueThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.