Abstract

Owing to their multiscale pore size regimes and unique properties, the materials with hierarchically porous structures have become an important family of functional materials in recent years. They have been applied from energy conversion and storage, catalysis, separation to drug delivery, etc. The synthesis of them is difficult by the need to employ multiple templates and take complicated steps. Herein, we successfully prepared epoxy-functionalized hierarchically porous hybrid monoliths (HPHMs) with micro/meso/macro-structures in an easy way. Firstly, a bulk monolithic material was formed via free radical polymerization between polyhedral oligomeric vinylsilsesquioxanes (vinylPOSS) and allyl glycidyl ether (AGE) in the presence of polycaprolactone (PCL). Then PCL was degraded with hydrochloric acid solution, and the epoxy-functionalized HPHM was obtained. This approach was very simple and suitable for large-scale preparation. Hybrid monoliths with different specific surface area (from 5.4 to 636.7 m2/g) were prepared by adjusting the mole ratio of vinylPOSS to AGE and the content of PCL. The results of several characterization methods, including nitrogen adsorption/desorption measurements, scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP), showed that these materials contained not only micropores and mesopores but also macropores. The materials were further modified with penicillamine to be used as hydrophilic interaction chromatography (HILIC) adsorbents for enriching N-glycopeptides in IgG and serum protein tryptic digests. Up to 23 N-glycopeptides were identified from IgG digest, and 385 N-glycopeptides and 283 N-glycosylation sites were identified from human serum digest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.