Abstract

The results of a systematic investigation on the effects of processing steps, via solid-state reactions, on structural phase characteristics and ionic conductivity of La0.9Sr0.1Ga0.8Mg0.2O3-δ solid electrolyte are reported. The main purpose of this work is to establish an optimized route for obtaining good densification and high ionic conductivity of this solid electrolyte. Processing routes with three successive calcinations at 1250 °C followed by attrition milling (R1), and with two sequences of calcination at 1350 °C with intermediary attrition milling (R2) give rise to near full density at 1450 °C sintering temperature. The rate of grain growth is fast when the relative density reaches 95%. Elemental mapping reveals uniform distribution of the constituents in the matrix along with La4Ga2O9, LaSrGa3O7 and sub-micrometer MgO grains at grain boundaries. The ionic conductivity of grains remains unchanged with the processing route and sintering profile. The blocking effect of charge carriers at grain boundaries decreases with increasing the dwell temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.