Abstract

In the present study, Cu colloidal nanoparticles and nanopowders were successfully synthesized by a pulsed wire evaporation process. Cu-based nano-inks were prepared by mixing Cu nanoparticles with acrylic resin and solvent. Cu nanoparticles with a particle size of < 20 nm were uniformly dispersed in ethylene glycol. The Cu nanopowders were successfully coated with an organic solvent composed of a hydrocarbon compound. This organic coating effectively inhibited the oxidation of Cu nanopowders. In addition, the stability of dispersion of Cu nanoparticles in the inks was improved by a ball-milling process. The electrical conductivity of the prepared Cu nano-inks was 10–28 \(\upmu \)S cm\(^{-1}\) for 20–40 wt% of Cu.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.