Abstract

At present, the continuous accumulation of the flue gas desulfurization (FGD) gypsum in steel plants leads to the serious environmental issues and resource waste. To achieve green and sustainable development for the steel industry, it is significant to improve the usage of by-product gypsum. Employing the sintering FGD gypsum, ferric oxide, and graphite carbon as raw materials, the effects of the carbon content, reaction time, and molar ratio of CaO to Fe2O3 on the desulfurization rate of gypsum were studied based on the orthogonal experiment. The results show that the order of the three influencing factors on the desulfurization rate of FGD gypsum is: molar ratio of CaO to Fe2O3 > reaction time > carbon content. Under the optimal conditions of 20 wt.% carbon content, 4 h reaction time, and 1:1 molar ratio of CaO to Fe2O3, the desulfurization rate of desulfurization gypsum is 95.79%, and 97.57 wt.% of calcium ferrite appears in the solid product, which can be used as sintering additive to increase the economic benefits of enterprises and realize the green ecological development mode of internal generation and internal digestion of solid waste in iron and steel enterprises.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.