Abstract

An immobilized metal affinity (IMA) adsorbent was prepared by grafting bottlebrush polymer pendant with iminodiacetic acid (IDA) from the surface of polydopamine (PDA)-coated magnetic graphene oxide (magGO), via surface-initiated atom transfer radical polymerization (SI-ATRP). Poly(hydroxyethyl methacrylate) (PHEMA) was grafted firstly from the PDA-coated magGO as the backbone, and then poly(glycidyl methacrylate) was grafted from the PHEMA chains via the second SI-ATRP to afford the bottlebrush polymer-grafted magGO Thereafter,IDA was anchored on the nanocomposites to produce the IMA adsorbent after chelating copper ions. The adsorbent was characterized by various physical and physicochemical methods. Its adsorption properties were evaluated by using histidine-rich proteins (bovine hemoglobin, BHb) and other proteins (lysozyme and cytochrome-C). The results show that its maximum adsorption capacity to BHb was 378.6mgg-1, and the adsorption equilibrium can be quickly reached within 1h. The adsorbent has excellent reproducibility and reusability. It has beenapplied to selectively purify hemoglobin from human whole blood, indicating its potential in practical applications. Graphical abstract.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.