Abstract

In this study, BiOI was successfully synthesized using a hydrothermal method and then modified using hexamethyldisiloxane (HMDS) and polydimethylsiloxane (PDMS), respectively, to achieve a controllable water contact angle (WCA) for these materials. The physical and chemical properties of the modified BiOI were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) method, UV–Vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared (FTIR) spectroscopy and water contact angle (WCA) techniques. Compared with the unmodified BiOI, HMDS- and PDMS-modified BiOI had higher photocatalytic activities for 17[Formula: see text]-ethinylestradiol (EE2) under visible light irradiation for 28 min after reacting in dark for 30 min. When BiOI was modified using HMDS and PDMS, the WCA increased. When the WCA of HMDS- and PDMS-modified BiOI was controlled in the range of 25.3–32.7[Formula: see text] and 38.1–78.5[Formula: see text], respectively, better photocatalytic performances were achieved. When the WCA of modified BiOI was 29.7[Formula: see text] (1.00[Formula: see text]mL HMDS) and 47.8[Formula: see text] (0.20[Formula: see text]mL PDMS), the best photocatalytic performances were achieved with EE2 removal rate of 98.85% and 98.72%, respectively, however, the removal rate of the unmodified BiOI was 85.01%. The reaction rate constants of BiOI (1.00[Formula: see text]mL HMDS) and BiOI (0.20[Formula: see text]mL PDMS) were 2.33 and 2.15 times higher than the unmodified BiOI, respectively. The improved catalytic performances of modified BiOI could be attributed to the synergistic effect of the controlled wettability of BiOI and functional groups on the surface of photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.