Abstract

The Abrams-Lloyd quantum algorithm computes an eigenvalue and the corresponding eigenstate of a unitary matrix from an approximate eigenvector Va. The eigenstate is a basis vector in the orthonormal eigenspace. Finding another eigenvalue, using a random approximate eigenvector, may require many trials as the trial may repeatedly result in the eigenvalue measured earlier. We present a method involving orthogonalization of the eigenstate obtained in a trial. It is used as the Va for the next trial. Because of the orthogonal construction, Abrams-Lloyd algorithm will not repeat the eigenvalue measured earlier. Thus, all the eigenvalues are obtained in sequence without repetitions. An operator that anticommutes with a unitary operator orthogonalizes the eigenvectors of the unitary. We implemented the method on the programming language model of quantum computation and tested it on a unitary matrix representing the time evolution operator of a small spin chain. All the eigenvalues of the operator were obtained sequentially. Another use of the first eigenvector from Abrams-Lloyd algorithm is preparing a state that is the uniform superposition of all the eigenvectors. This is possible by nonorthogonalizing the first eigenvector in all dimensions and then applying the Abrams-Lloyd algorithm steps stopping short of the last measurement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.