Abstract

Based on the navigation strategy of insects utilizing the polarized skylight, an integrated polarization sensor for autonomous navigation is presented. The polarization sensor is fabricated using the proposed nanoimprint photolithography (NIPL) process by integrating a nanograting polarizer and an image chip. The NIPL process uses a UV-transparent variant template with nanoscale patterns and a microscale metal light-blocking layer. During the NIPL process, part of the resist material is pressed to fill into the nanofeatures of the variant template and is cured under UV exposure. At the same time, the other parts of the resist material create micropatterns according to the light-blocking layer. Polymer-based variant templates can be used for conformal contacts on non-flat substrates with excellent pattern transfer fidelity. The NIPL process is suitable for cross-scale micro–nano fabrication in wide applications. The measurement error of the polarization angle of the integrated polarization sensor is ±0.2°; thus, it will have a good application prospect in the polarization navigation application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.