Abstract

Strengthening the interfacial contact between the reactive components effectively boosts the energy release of energetic materials. In this study, we aimed to create a close-knit interfacial contact condition between aluminum nanoparticles (Al NPs) and Polyvinylidene fluoride-hexafluoropropylene (P(VDF-HFP)) through hydrolytic adsorption and assembling 1H, 1H, 2H, 2H-Perfluorododecyltrichlorosilane (FTCS) on the surface of Al NPs. Leveraging hydrogen bonding between -CF and -CH and the interaction between C-F⋯F-C groups, the adsorbed FTCS directly leads to the growth of the P(VDF-HFP) coating layer around the treated Al NPs, yielding Al@FTCS/P(VDF-HFP) energetic composites. In comparison with the ultrasonically processed Al/P(VDF-HFP) mixture, thermal analysis reveals that Al@FTCS/P(VDF-HFP) exhibits a 57 °C lower reaction onset temperature and a 1646 J/g increase in heat release. Associated combustion tests demonstrate a 52% shorter ignition delay, 62% shorter combustion time, and a 288% faster pressurization rate. These improvements in energetic characteristics stem from the reactivity activation of FTCS towards Al NPs by the etching effect to the surface Al2O3. Moreover, enhanced interfacial contact facilitated by the FTCS-directed growth of P(VDF-HFP) around Al NPs further accelerates the whole reaction process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.