Abstract

The preparation of continuous hydroxyapatite film on stone is a promising method of protecting marble from erosion. However, many methods negatively affect the calcium in the substrate and forming of struvite on the dolomite surface, leading to a heterogeneous coating and low efficiency. In this study, a continuous hydroxyapatite coating on dolomitic marble was achieved from graphene enhanced Ca(OH)2 nanoparticles as the calcium precursor using the sol-gel method. The morphology and the structure of the film was evaluated by a field emission scanning electron microscope coupled with energy dispersive spectroscopy (FESEM-EDS), an optical microscope, Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and analytical techniques. Moreover, the color and the contact angle measurements, as well as the simulated acid rain test and freeze–thaw treatment, were performed to assess the chromatic aberration, hydrophilicity, reliability, and durability of the coating. A suppositional combination model among hydroxyapatite, graphene quantum dots, and dolomite were suggested based on structural similarities between the support material and components of the functional coating. The integrality and efficiency of the hydroxyapatite film was improved by compositing with graphene quantum dots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.