Abstract

Nowadays, inorganic/polymer composites have attracted significant interest in thermoelectric field, since the composite materials usually achieve their respective advantages complementary to each other. In this work, molybdenum diselenide (MoSe2) was synthesized by a facile hydrothermal method. Solution processible two-dimensional (2D) MoSe2 nanosheets (NSs) were successfully obtained using dimethylsulfoxide (DMSO) solvent or lithium intercalation procedure. Combined with Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), MoSe2/PEDOT:PSS composite thin films were fabricated by direct vacuum-filtration method. Thermoelectric properties of composite thin films were investigated systematically and found that 2D MoSe2 NSs and PEDOT:PSS have the synergistic effect on improving thermoelectric properties. The maximum power factor was calculated to be 48.6 µW m−1 K−2 with 5 wt% 2D MoSe2 NSs embedding into PEDOT:PSS matrix, which is almost 69% higher than that of pure PEDOT:PSS. These results demonstrate that 2D inorganic/polymer composite method is one of promising strategies to get high-performance polymer-based thermoelectric composites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.