Abstract

Numerous fluorine-containing hazardous solid wastes from the electrolytic aluminum process pose a serious threat to the ecosystem and human health. Currently, in the study of leaching on these wastes, Al and F are usually recovered by adjusting the pH of the leaching solution to precipitate aluminium hydroxyfluoride hydrate, which can be used to produce aluminum fluoride by roasting. However, aluminium hydroxyfluoride hydrate is often mingled with cryolite and other impurities when precipitating, which ultimately affects the purity of obtained aluminum fluoride by calcination. Interestingly, herein, the aluminium hydroxyfluoride hydrate residue was digested by fluorosilicic acid to effectively remove impurities and obtain a pure aluminum fluoride solution, from which the β-AlF3 product was produced by crystallization at a high-temperature. The results show that under the conditions of a temperature of 60 °C, time of 35 min, initial fluorine-aluminum molar ratio of 3:1 and initial concentration of fluorosilicic acid of 18 %, the gross yield of fluorine is 86.2 %, and the recovery of silicon in the form of SiO2 is 95.2 %. During crystallization, the product changes from AlF3·3H2O to β-AlF3 with the increase of temperature. Under the conditions of a crystallization temperature of 150 °C, an initial concentration of aluminum fluoride of 191.10 g/L and a stirring speed of 200 rpm, β-AlF3 of an average particle size of 43.22 μm was obtained by adding 5 % seed. The contents of Al and F in β-AlF3 products are 32.57 % and 61.49 % respectively, which meet the requirements of GB/T 4292–2017 (AF-0) about National Standards of China. According to DFT calculation, the β-AlF3 tends to adsorb two or three water molecules in its cavity structure, which explains why the crystallized β-AlF3 contains water of 5.10 % at 180 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.