Abstract

Traditional cushioning package materials, such as Expended Polystyrene (EPS) and Expanded Polyethylene (EPE), were made with petroleum-based plastics, which are harmful to the environment. It is crucial to develop renewable bio-based cushioning materials that can replace the aforementioned foams due to the rising energy demands of human society and the depletion of fossil fuels. Herein, we report an effective strategy for creating anisotropic elastic wood with special spring-like lamellar structures. Selective removal of lignin and hemicellulose by simple chemical treatment and thermal treatment of the samples after freeze-drying results in an elastic material with good mechanical properties. The resulting elastic wood has a reversible compression rate of 60% and a high elastic recovery (99% height retention after 100 cycles at 60% strain). Drop tests revealed that the elastic wood has excellent cushioning properties. In addition, the chemical and thermal treatments also enlarge the pores in the material, which is favorable for subsequent functionalization. By loading the elastic wood with a muti-walled carbon nanotube (MWCNT), electromagnetic shielding properties are achieved, while the mechanical properties of elastic wood remain unchanged. Electromagnetic shielding materials can effectively suppress various electromagnetic waves propagating through space and the resulting electromagnetic interference and electromagnetic radiation, improve the electromagnetic compatibility of electronic systems and electronic equipment, and ensure the safety of information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.