Abstract

Thin films of ZnS and ZnS:Cu were prepared by an original metalorganic chemical vapour deposition (MOCVD) method under atmospheric pressure onto a glass substrate heated up to 230–250 °C. The film thickness varied from 0.6 to 1 μm. The thin films were doped with Cu and Cl by the thermal treatment during 1 h at 600 °C at atmospheric pressure in the blend composed of a ZnS powder with Cu and Cl compounds. These films were used for fabrication of the thin film electroluminescent (TFEL) devices with a conventional double insulating structure. The structural properties were investigated by use of X-ray diffraction (XRD) techniques and atomic force microscopy (AFM). Electroluminescent (EL) spectra, electrical and EL characteristics were investigated. The EL spectra and characteristics as well as structural parameters depend on the growth conditions and significantly modified after the annealing. Blue color emission with brightness of 10 cd m − 2 under a sine wave excitation at 60 V and 5 kHz was obtained. The degradation behavior of the TFEL devices with ZnS:[Cu, Cl] films fabricated using an original non-vacuum methods of deposition and annealing is the same as that of commercial thin film phosphor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.