Abstract

Microcrystalline graphite (MG) was used as raw material and oxidated by Hummers method. And further the graphene oxide (GO) was obtained by ultrasonic stripping. The TP modified graphene (TPG) was prepared by the surface grafting of pure natural green tea extract tea polyphenols (TP) on the surface of GO. Finally, the TPG/epoxy resin composite was prepared by solution blending and heat-curing moulding method.The characterization of structure and properties of TPG was analyzed by X ray diffraction pattern (XRD), infrared spectroscopy (FT-IR), thermo gravimetric analysis (TGA) and X ray photoelectron spectroscopy (XPS). A universal material testing machine was used to test the mechanical properties of epoxy resin composites with different addition of TPG. Field emission scanning electron microscopy (SEM) was used to observe the tensile-sectional morphology of the composites. The thermal stability of the composites was investigated by thermogravimetry and thermal dilatometer. The experimental results showed that the TP molecule was successfully grafted on the oxygen-containing functional groups of the GO surface through the phenolic hydroxyl group.When the addition of TPG was 1.0 wt%, the decomposition temperature of the epoxy resin was increased by 22.2 °C,and the surface resistivity decreased from 1.35×1014 Ω·m to 1.7×109 Ω·m. When the added amount of TPG was 0.5 wt%, the tensile strength of composites was increased by 13.5% reaching 59.85 MPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.