Abstract

Material design was performed to solve the twin problems of densification together with brittleness of binderless TiC (BTC). Novel binderless TiC composites reinforced by multilayer graphene (MLG) were fabricated through two-step sintering (TSS) with the auxiliary of nano-sized TiC and WC as sintering aids. The synergistic effects of multilayer graphene and two-step sintering on densification behavior as well as mechanical properties has been investigated. The results demonstrated that excellent mechanical properties were achieved for 0.45 wt% MLG addition with a hardness of 24.36 GPa, a flexural strength of 708.9 MPa as well as a fracture toughness of 7.28 MPa·mm1/2. MLG exerted multifaceted influence on the hybrid TiC-based materials: 1) enhancing the densification and suppressing the grain growth simultaneously; 2) improving the uniform distribution of nano TiC and WC particles throughout the micro TiC matrix; 3) facilitating the load transferring from the matrix to MLG by introducing multi-phase and multi-scale strong-weak hybrid interfaces; 4) inducing efficient toughening mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.