Abstract

Mineral powders such as ground calcium carbonate (GCC) and wollastonite are widely used as fillers in plastics, rubber, paper, paints and other fields. The interface compatibility between the polymer matrix and the mineral particles is relatively weak, both because of the smooth cleavage surface and the sharp particle edges formed during pulverizing. It is beneficial therefore to modify the surface properties of mineral powders before they are used in a polymer composite. In this paper, we report the successful preparation of composite mineral particles, coated by nanoparticles of calcium carbonate of 20–100 nm particle size, by chemical reaction using the Ca(OH) 2–H 2O–CO 2 system. The degree of nanoparticle coverage can reach 100% if the operating parameters are effectively controlled, and the specific surface area can be increased to three times the value before modification. Mechanical testing of polypropylene containing composite wollastonite powder as a filler shows an increase in the impact strength of 65% compared to similar samples prepared using conventional filler powder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.