Abstract

(1) Background: Collagen and sodium alginate are commonly used in the field of biomedical materials due to their excellent biocompatibility. This study focuses on the preparation, modification, and characterization of collagen/sodium alginate (C/SA)-based biomedical materials. (2) Methods: The characteristics, including surface chemistry, mechanical properties, hygroscopicity, and porosity, were analyzed. The hemostatic activity in vitro was measured using a blood clotting assay and dynamic blood clotting assay. (3) Results: The results from microstructure and porosity measurement revealed that all of the sponges exhibited a porosity of more than 95 percent. The sponge cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) showed better tensile strength and lower elongation at break. The sponges cross-linked with EDC/NHS and oxidized sodium alginate (OSA) exhibited the highest hygroscopicity in comparison with the uncross-linked sponge. (4) Conclusions: Our study demonstrated that the C/SA-based material we prepared exhibited a high level of porosity, enabling efficient absorption of tissue exudate and blood. Additionally, the materials revealed excellent hemocompatibility, making them suitable for use as a hemostatic dressing in the field of biomedical materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.