Abstract

WC–Co cemented carbides were prepared by liquid-state sintering of in situ synthesized composite powders with a constant Co content but different carbon concentrations, and with different size scales of VC particles as grain-growth inhibitor. With an optimized carbon addition and doping with microscale VC particles, an ultrahigh fracture strength with a mean value above 5000 MPa was achieved for cemented carbides. By detailed crystallographic analysis of the configuration and interactions of the WC, Co and VC phases, the effects of VC particle size on the microstructure and mechanical properties of cemented carbides are identified. The mechanisms by which the fracture strength depends on the VC particle size contain the effects on the changes in Co binder distribution, atomic matching at the phase boundary and WC grain size. The dominant factors for ultrahigh fracture strength of cemented carbides are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.