Abstract

Bentonite is characterized by the large specific surface, good adsorption, ion exchange ability, and nontoxicity. An enhanced bentonite base composite flocculant (BTA) can be prepared from treating the calcium base bentonite and compositing various functional additives. Bentonite was firstly treated by citric acid, then the talc and activated carbon turned to be acid part and simultaneously the part that was treated by sodium bicarbonate and calcium hydroxide turned to be alkaline part, and finally the acid bentonite part and alkaline bentonite part were mixed up with preground powder of polymeric chloride aluminium (PAC), cationic polyacrylamide (CPAM), ferrous sulfate, and aluminum sulfate, and after all of the processing flocculant BTA was obtained. The optimum preparation process of flocculant BTA has shown 29.5% acid bentonite part, 29.5% alkaline bentonite part, 15% PAC, 1% CPAM, 5% ferrous sulfate, and 20% aluminum sulfate. BTA was used to treat drinking water with high turbidity and metal ion in Karamay City, Xinjiang. The treated water was surely up to the drinking water standard of China in decolorization rate, deodorization rate, heavy metal ion removal rate, and so forth, and contents of residual aluminum ions and acrylamide monomer in drinking water were considerably decreased.

Highlights

  • China is facing water shortage and severe water pollution

  • According to the composite principle, factors that could affect the performances of flocculant base composite flocculant (BTA) mainly included the content of inorganic polymer flocculant polyaluminum chloride (PAC), type and content of precipitating aid, pH value of water in flocculation, and content of ferrous sulfate and aluminum sulfate

  • The increase degree accelerated generally when PAC content was lower than 45% and rate of deturbidity reached 95.1% at PAC content of 40%, while when PAC content was 50%, rate of deturbidity only increased to 96.9%

Read more

Summary

Introduction

China is facing water shortage and severe water pollution. In order to reduce the harm of water pollution, improve and protect environment, and achieve higher water quality, domestic as well as industrial water was often purified. Among various water treatment agents, flocculants have been found to be with wide application due to their satisfying purification performance, low cost, and convenience. Flocculants are the most widely used agents with the largest consumption in water treatment and mainly include inorganic flocculant, organic polymer flocculant, microbial flocculant, and composite flocculants [1]. In recent years, based on investigation of surface activity, ultrafine effect, chemical component, and crystal structure of natural minerals, minerals are found to have good environment attributes and natural minerals were applied in water pollution management due to their self-purification in various pollutants [2,3,4,5,6]. Mineral materials have the advantage in wide varieties, abundant reserve, low cost, and little secondary pollution. The frequently used minerals include montmorillonite, sepiolite, zeolite, kieselguhr, and attapulgite [7,8,9,10,11,12,13,14,15]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.