Abstract

In this article, we studied the effect of annealing (600 °C for 1 h) and the applied magnetic field from 50 Oe to 20 kOe of Co2FeSi glass-coated microwires with ordered L21 structure prepared by Taylor–Ulitovsky technique on the magnetic behavior. The as-prepared and annealed samples show a ferromagnetic behavior at the range of measuring temperature (5 to 400 K) and magnetic field (50 Oe to 20 kOe). M–H loops of as prepared sample do not show a squared shape. Meanwhile, perfectly squared hysteresis loops have detected for the annealed sample. In addition, annealed sample shows high magnetization M/M5K ratio, coercivity, and anisotropy field, as-compared to the as-prepared one. The annealed sample shows considerable irreversibility when the magnetic behavior changes with temperature upon the applied magnetic field at 50 and 200 Oe. Such irreversibility does not found in the as-prepared sample measured at the same magnetic field due to mixed amorphous and crystalline structure. By increasing the external magnetic field higher than 200 Oe and up to 20 kOe a gradual changing in the magnetic behavior has been detected where the irreversibility disappeared at applying magnetic field about 1 kOe and the magnetic behavior is totally change by increasing the external magnetic field up to the maximum 20 kOe. The difference in the magnetic behavior of the annealed glass-coated Co2FeSi glass-coated microwires indicates the effect of internal stresses induced by the presence of the glass-coating and the annealing-induced recrystallization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.