Abstract

In this work, polysaccharide nanoparticles based on tamarind seeds xyloglucan are prepared, analyzed in term of characteristic sizes and morphology, and degraded by the action of a glycoside-hydrolase. Obtained in an aqueous NaNO2 solution (0.1M), these unaggregated nanoparticles have a characteristic diameter of ca. 60nm (DLS, AFM and TEM measures). They are not compact, but highly swollen and look like hyperbranched and dendrimer-like (soft sphere model) structures. This observation is coherent with the native structure of the xyloglucan macromolecules which are themselves branched. The enzymatic hydrolysis by cellulase of Trichoderma reesei of the xyloglucan nanoparticles is investigated. In particular, the apparent mass molecular weight drastically decreases meaning that the xyloglucan nanoparticles are effectively fully hydrolyzed by the endo-β-(1,4)-glucanase. Furthermore, we observe that the enzyme has to uncoil the nanoparticles before cutting the β-(1→4) bonds and digesting the xyloglucan.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.