Abstract

In this study, a developed easy-operation method was adopted to generate ultralight and compressible graphene aerogels by using graphene oxide and ammonia. By changing the process parameters, such as reduction temperature, reducing agent content and ammonia concentration, the variation laws of the density and pore size of aerogels were obtained, which aided in realizing the controllable preparation of aerogel structures. The prepared graphene aerogel has good compressive performance, and its density can reach 5.26 mg/cm3. Although it was repeatedly compressed 200 times under a load that was 4000 times as large as its own weight, it maintained its structural integrity and mechanical properties. An ideal model of three-dimensional graphene aerogel was constructed, and the electromagnetic wave absorption performance was simulated using the Computer Simulation Technology (CST) Microwave Studio software. The results showed that when the thickness, pore size and height of the sheet were 1.4, 5 and 14 mm, respectively, an optimal electromagnetic wave absorption effect of −31.08 dB could be obtained. Furthermore, the effects of thickness, pore size and height of the sheet on the electromagnetic wave absorption performance are revealed, which provide a reference for the structural design of aerogels with both compressibility and electromagnetic wave absorption performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.