Abstract
Thin films of ZrO 2 loaded with 10, 30 and 50 mol% Sm were prepared by a photochemical method using thin films of metal acetylacetonate complexes as precursors. The photolysis of these films induces the fragmentation of the acetylacetonate ligand and the partial reduction of metal ion together with volatile organic compounds. When the metallic complex is exposed to air, the product of the reaction is metal oxide. The photoreactivity of these films was monitored by FT-IR spectroscopy, followed by a post-annealing treatment process. The obtained films were characterized by X-ray photoelectron spectroscopy and atomic force microscopy. Photoluminescense studies of the films employed 400 nm radiation for excitation of the Sm ions present. The emission spectra showed signals arising from the 4G 5/2→ 6H J ( J=3/2, 7/2, 9/2) transitions, where the 4G 5/2→ 6H 3/2 transition has the highest intensity. The concentration dependence of the PL intensity was also studied. A maximum PL intensity was observed with 10 mol% Sm content but then diminished with higher Sm concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.