Abstract
Magnetic nanoparticles were prepared by a reduction–precipitation method and coated with an amino silane coupling agent. Guanine (Gua) was conjugated to the magnetic nanoparticles (MNPs) using glutaraldehyde as a cross-linker. Common techniques (Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and vibrating electron microscopy) were used to assess the properties of the particles. Structural investigations showed that amino silane-coated MNPs had a particle size of about 40–60 nm in diameter with a spherical morphology. The guanine-conjugated MNPs were radiolabeled with 99mTc(I)-tricarbonyl core (99mTc(CO)3-MNP-Gua) with a labeling yield of 72 ± 4 %. Pure radiolabeled magnetic particles were obtained by washing them with saline solution, and the radiochemical purity of 99mTc(CO)3-MNP-Gua was 98 ± 2 % in the final solution. The biologic distribution of guanine MNPs was assessed in New Zealand rabbits using a gamma camera. In the in vivo experiment, a high level of radioactivity was observed in the lungs and liver soon after intravenous administration of 99mTc(CO)3-MNP-Gua.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.