Abstract

Blends of polylactide (PLA) and recycled polypropylene (rPP) were prepared by melt-processing using a corotating twin-screw extruder and subsequent pelletizing of the extrudates for injection molding. The PLA/rPP blends were characterized by Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), rheometer (MCR-102), scanning electron microscopy(SEM), tensile tests, and impact measurements. The results indicate that the PLA/rPP blend is immiscible and has a two-phase structure. TGA revealed enhancement of the thermal stability of the blends upon addition of rPP. The storage modulus, loss modulus, and complex viscosity of the blends increased with rPP concentration. Mechanical studies showed that introduction of rPP results in a decrease in tensile strength and modulus and enhancement of the impact strength of PLA in the blends. The effects of a silane coupling agent on the morphology and on the tensile and impact properties of the rPP blends of silane-modified PLA were also examined. SEM studies suggest that silane is an effective interfacial modifier. Thus, better interfacial adhesion was observed with silane-modified blends as compared with unmodified blends. Silane also improved the mechanical properties of the modified blends. The blends reached maximum tensile strength at 1.5 wt.% silane (relative to modified PLA content), and impact strength increased with increasing silane concentration. These results confirm the enhancing effect of silane on modified PLA/rPP blends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.