Abstract

Integration of graphene with other materials by direct growth, i.e., not using mechanical transfer procedures, is investigated on the example of metal/graphene/dielectric heterostructures. Such structures may become useful in spintronics applications using graphene as a spin-filter. Here, we systematically discuss the optimization of synthesis procedures for every layer of the heterostructure and characterize the material by imaging and diffraction methods. 300 nm thick contiguous (111) Ni-films are grown by physical vapor deposition on YSZ(111) or Al2O3(0001) substrates. Subsequently, chemical vapor deposition growth of graphene in ultra-high vacuum (UHV) is compared to tube-furnace synthesis. Only under UHV conditions, monolayer graphene in registry with Ni(111) has been obtained. In the tube furnace, mono- and bilayer graphene is obtained at growth temperatures of ∼800 °C, while at 900 °C, non-uniform thick graphene multilayers are formed. Y2O3 films grown by reactive molecular beam epitaxy in UHV covers the graphene/Ni(111) surface uniformly. Annealing to 500 °C results in crystallization of the yttria with a (111) surface orientation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.