Abstract

Mesoporous silica (MCM-48) was synthesized and used as a catalyst for supporting the nickel oxide photocatalyst. The loading of nickel oxide on MCM-48 results in a considerable reduction in the bandgap energy to 2.4eV. MCM-48 was used as a catalyst and back-supporter for the nickel oxide to enhance its photocatalytic properties along with adsorption capacity. Therefore, the adsorption capacity of MCM-48/Ni2O3 was enhanced by 17.5% and 32.2% compared to Ni2O3 and MCM-48, respectively. Furthermore, the percentage of photocatalytic degradation was improved by approximately 68.2% relative to the free-standing Ni2O3. The MCM-48/Ni2O3 proved the chemisorption adsorption mechanism that happens in multilayer form through the heterogeneous surface. This through fixing such Ni2O3 particles over the nanoporous topography to provide more exposed hot adsorption and photocatalytic sites for the incident light photons. Therefore, supporting Ni2O3 catalytic particles onto MCM-48 produces a new category of photocatalytic systems with promising active centers for the efficient degradation of Congo red dye molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.