Abstract

The purpose of this chapter is to detail the formulation and characterization of a magnetically-targeted drug delivery vehicle, termed nano-in-microparticles (NIMs), for pulmonary drug delivery. Currently, chemotherapeutics and antibiotics are delivered systemically and result in whole body side-effects. NIMs are formulated with superparamagnetic iron oxide nanoparticles, termed SPIONs, making these particles targetable to specific lung regions using a strong external magnet. Additionally, these particles can be formulated to contain any drug or therapeutic agent, such that a therapeutic dose can be delivered to a specific tissue location using the SPIONs-magnet interaction. Finally, these particles are in the appropriate size range for pulmonary delivery, making NIMs therapeutics feasibly inhalable.To generate these particles a solution containing lactose, SPIONs, and a microsphere dye (used as a drug surrogate) is spray-dried using a laboratory-scale spray dryer. The resulting dry powder microparticles (NIMs) can be characterized for their size and morphological properties by various techniques that are presented in this chapter.The utility of NIMs as a magneticfield-dependent targeting delivery platform in an in vivo mouse model has been demonstrated, and a protocol detailing the intratracheal delivery of NIMs dry powder is included as a separate chapter in this book.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.