Abstract
The aim of the present paper was to evaluate the effect of hydroxyapatite coatings on the two types of Mg–Zn–Ag alloys as a possible solution to control magnesium alloy degradation. The coatings were prepared by the radio frequency magnetron sputtering method at a deposition temperature of 300 °C. To perform this evaluation, the coated alloys were immersed in a simulated body fluid solution at body temperature (37 ± 0.5 °C) to determine the corrosion resistance through electrochemical and immersion tests. Moreover, the investigation also consisted of the evaluation of microchemical, mechanical, and morphological properties. The deposition temperature of 300 °C was enough to obtain a crystalline hydroxyapatite structure with a Ca/P ratio close to the stochiometric one. The adhesion of coatings was not influenced by the nature of Mg–Zn–Ag alloys, so similar values for both coated alloys were found. The results showed that the coating was homogonous deposited on the Mg–Zn–Ag alloys and the corrosion resistance of uncoated magnesium alloys was improved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.