Abstract

The emulsifier-free core–shell interpenetrating polymer network (IPN) fluorinated polyacrylate latex particles with fluorine rich in shell were prepared by emulsifier-free seeded emulsion polymerization with water as the reaction medium. The fluorinated copolymer could be fixed on the particle surface due to the formation of interpenetrating polymer network. The resultant core–shell particles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS) analysis, Fourier transform infrared (FTIR) spectrometry, X-ray photoelectron spectroscopy (XPS) analysis and thermogravimetric analysis (TGA). The core–shell particles possessed very narrow monomodal particle size distributions. XPS analysis of the latex film displayed that perfluoroalkyl groups had the tendency to enrich at surface and there was a gradient concentration of fluorine in the structure of the latex film from the film–air interface to the film–glass interface. In addition, compared with the latex film of crosslinked polyacrylate prepared under the same condition, the emulsifier-free core–shell IPN-fluorinated polyacrylate latex film showed better thermal stability, higher contact angle and lower water uptake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.