Abstract

This work describes a novel method for preparing electro-conductive rotor yarns by in situ oxidative chemical polymerization of pyrrole. The effects of different process parameters on electrical resistivity of the yarn were studied by using Box-Behnken response surface design. The concentration of monomer, polymerization time and polymerization temperature were found to influence the electrical resistivity of the yarn. It was observed that electrical resistivity of the yarn increased linearly with increase of measuring length of it. Whereas the effects of yarn twist and tensile strain found to had negative correlation with electrical resistivity of electro-conductive rotor yarns. Microscopic image analysis showed that there was uniform distribution of PPy polymer on the surface of cotton fibres and FTIR analysis depicted possible chemical interaction between polypyrrole and cellulose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.