Abstract

Two Cu-based anode cermets suitable for direct hydrocarbon oxidation in Solid Oxide Fuel Cells (SOFC) based on yttria stabilized zirconia (YSZ) electrolyte were tested in the temperature range (500–800°C). The ceramic components were CeO2 and the perovskite La0.75Sr0.25Cr0.5Mn0.5O3−d (LSCM). The cermets were made in both the form of pellets and films applied onto the YSZ electrolytes. Pellets exhibited good mechanical strength and resistance to fracture in both oxidized and reduced state. Cu–LSCM cermets exhibited good redox cycling behavior between 700–800°C. Reduction temperature plays a significant role on final morphology with Cu segregation occurring at 800°C. Cu–LSCM films were found to exhibit lower polarization resistances than Cu–CeO2 under 5% H2. Examination of the data revealed a poorer contact of the Cu–CeO2 electrode with the YSZ surface than the Cu–LSCM electrode. Reduction temperature should be less than 750°C to ensure suitable microstructure and adhesion of both film electrodes with the electrolyte.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.