Abstract

The use of polymers as supports for enzyme immobilization is a strategy that enables to remove the enzymes from a chemical reaction and improve their efficiency in catalytic processes. In this work, cellulose triacetate (CTA) was used for physical adsorption of phospholipase Lecitase ultra (LU). CTA is more hydrophobic than cellulose, shows good performance in the lipases immobilization being a good candidate for immobilization of phospholipases. We investigated the immobilization of LU in CTA, the stability of the immobilized enzyme (CTA-LU) and the performance of CTA-LU using soybean oil as a substrate. LU was efficiently immobilized in CTA reaching 97.1% in 60 min of contact with an enzymatic activity of 975.8 U·g−1. The CTA-LU system presents good thermal stability, being superior of the free enzyme and increase of the catalytic activity in the whole range of pH values. The difference observed for immobilized enzyme compared to free one occurs because of the interaction between the enzyme and the polymer, which stabilizes the enzyme. The CTA-LU system was used in the transesterification of soybean oil with methanol, with the production of fatty acid methyl esters. The results showed that CTA-LU is a promising system for enzymatic reactions.

Highlights

  • An important characteristic of cellulosic derivatives is the possibility of mediating, by chemical modification, their hydrophilic/hydrophobic character

  • It is possible to observe peaks corresponding to the main fatty acid esters of soybean oil: Immobilization phospholipase, Lecitase

  • The chromatographic profile of biodiesel from for soybean oil catalyzed by Lecitase Ultra (LU) immobilized on biocatalyst in several esterification, hydrolysis and transesterification processes

Read more

Summary

Introduction

Due to processability and biodegradable potential, an interesting field for CA applications is its use as a matrix for incorporation of bioactive species, by occlusion in the matrix or by physical adsorption [5,6,7]. This polymer can be produced from dissolving pulp or cellulose obtained from alternative lignocellulosic sources, through the reaction of cellulose with acetic anhydride and acetic acid catalyzed by sulfuric or perchloric acid. The average number of acetyl groups per glyosidic unit, or degree of substitution (DS), can be varied from 0 in the case of cellulose to 3 in the case of cellulose triacetate (CTA) and may be 2.0–2.5 when

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.