Abstract

The objective of this study was to fabricate and investigate the characteristics of a suitable scaffold for bone regeneration. Therefore, chitosan was combined with various amounts of oxidized starch through reductive alkylation process. Afterwards, chopped CaP-coated PCL nanofibers were added into the chitosan-starch composite scaffolds in order to obtain bioactivity and mimic bone extracellular matrix structure. Scanning electron microscopy confirmed that all scaffolds had well-interconnected porous structure. The mean pore size, porosity, and water uptake of the composite scaffolds increased by incorporation of higher amounts of starch, while this trend was opposite for compressive modulus and strength. Osteoblast-like cells (MG63) culturing on the scaffolds demonstrated that higher starch content could improve cell viability. Moreover, the cells spread and anchored well on the scaffolds, on which the surface was covered with a monolayer of cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.