Abstract

Berberine (BBR) is a quaternary ammonium salt that possesses plentiful therapeutics properties. But notwithstanding the positive points, it has two negative points: poor aqueous solubility and permeability. These properties are important for achieving good bioavailability and therapeutic effect. Lately nano formulations developed to overcome these challenges through drug encapsulation. The aim of this study was preparation of nano formulations based on surfactant to achieve the best formulation with good characteristics. In this research, nano micellar formulations were prepared by thin film hydration method using poly sorbate 20 as surfactant and BBR as drug to get the good formulation based on high encapsulation efficiency (EE). Then nano micelles were characterized by particle size and polydispersity index (PDI) by DLS, drug encapsulation by UV-Vis spectrophotometer and drug release behavior in simulated gastro fluid (SGF) and simulated intestinal fluid (SIF). BBR successfully was encapsulated within micelles by thin film hydration method. DLS analysis showed average size of nano micelle samples between 9.247 and 18.46 nm, PDI was about 0.271, with maximum percentage of drug encapsulation of 78%. Also fluctuation of drug release was very low in elementary time points in SGF and SIF, and it was approximately sustained release profile. These results showed to achieve a good formulation and in order to have better drug delivery, physical attributes including the size distribution, PDI, and EE should be controlled. Our findings may be benefactress for different applications in variety research fields of pharmaceutical industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.